| |II| IEIII X

P
=
k.
» &
4}
4

Accelerating Big Data Applications:
Next Generation Memory/Storage Systems

Chun-Feng Wu (&£ %)

Assistant Professor, National Yang Ming Chiao Tung University

& cfwudl7@cs.nycu.edu.tw
@a https://ctwu417.github.io

mailto:cfwu@g.harvard.edu
https://cfwu417.github.io/

Personal Information

e Chun-Feng Wu (R %)

Assistant Professor @ Department of Computer Science,
National Yang Ming Chiao Tung University
Prior: Postdoc @ Harvard University

Cooperation

— Website: https://cfwu417.github.io
— Operating System and Computer ARchitecture (OSCAR) Lab (EC119)

e Research Interests
— Operating System (OS)
— Processing-in-Memory (PIM) (Al Accelerator)
— In-Storage Computing (ISC)
— Co-design Applications with Memory/Storage Devices

— Emerging non-volatile memory (NVM)
e STT-RAM, ReRAM, PCM, Flash Memory (SSD), SMR (HDD)

Application Co-design

https://cfwu417.github.io/

Education and Experience

* Master at Department of Computer Science, National Tsing Hua University
— Advisor: Prof. Yeh-Chin Chung (3 23E 5 Z(+%) |

— Master Thesis: Hybrid mechanisms to improve write scenarios for cloud storage services

09/2016 - 06/2021

* PhD at Department of Computer Science and Information Engineering, National Taiwan University
— Advisor: Prof. Tei-Wei Kuo ([KHEZ#%)
— Ranking in class: Rank #2, GPA: 4.17
— Dissertation: Support to Huge Main-Memory Extension with Non-Volatile Memory

08/2017 - 08/2021

* Research Assistant at Institute of Information Science, Academia Sinica

— PI: Prof. Yuan-Hao Chang (1E 5. 52 #f5%)

* Post-Doctoral Scholar at Department of Computer Science, Harvard University, Cambridge, USA
— Lab PI: Prof. David Brooks & Prof. Gu-Yeon Wei Cooperate withSAMSUNG

— Website: https://visiarch.eecs.harvard.edu/people and OQMeta

Agenda

Background: Data & Storage/Memory
Challenge of Big Data Era

Next-Generation Memory/Storage System
— Processing-in-Memory

— Hybrid Memory

— Co-designing Application and Devices

Case Study: Co-designing Recommendation Systems with SSDs
Future Plan
Q&A

Data & Memory/Storage Devices

e What is data: A sequence of 0 and 1.
e What are storage/memory devices: Devices
consist of material which can switch between 2

states (i.e., 0 and 1) stably.
 Magnetic Field (Parallel vs Anti-Parallel): HDD
* Voltage (High vs Low): SSD
e Capacitor (Charged or not): DRAM
e Resistance (High vs Low): ReRAM, PCM, STT-MRAM

0111
®

0100

1011

-7 .
[1] https://www.lumenera.com/blog/bit-depth _8 Audio s
[2] https://en.wikipedia.org/wiki/Audio_bit_depth 1000

https://www.lumenera.com/blog/bit-depth

What is Storage & Data

What is data: A sequence of 0 and 1.

What are storage/memory devices: Devices consist of material which can

switch between 2 states (i.e., 0 and 1) easily.
 Magnetic Field (Parallel vs Anti-Parallel): HDD
* Voltage (High vs Low): SSD
e Capacitor (Charged or not): DRAM
e Resistance (High vs Low): ReRAM, PCM, STT-MRAM

Volatile vs Non-Volatile : Retain the data, even when the power is off?

e SSD is non-volatile, DRAM is volatile
Access Granularity: Minimum read/write size for each device.

e Byte-addressable (Cacheline 64B): DRAM, ReRAM, PCM, STT-MRAM
* Flash Page (4KB ~ 16KB): SSD
e Sector (512B ~ 4KB): HDD

Hierarchy: Cache vs Memory vs Storage

e Memory Hierarchy: Balance access time and cost.
 CPU cache is super fast. Memory devices are at least
10x slower than CPU cache. But storage devices are Absorb ~99% Cache

A 1~10ns
even 1000x slower. ccesses (S;;?w)
* Locality: Cache can absorb most accesses but is more § 10x
. Absorb ~99%
eXpenS|Ve. Accesses Memory 10~100ns
. i : (DRAM)
e OS execution time is slower than memory
> 1000x
accesses but faster than storage accesses. The rest ~10 1)
e Get data from memory: CPU loads/stores. <0.0001

A
* Get data from storage: Shall execute OS. e

(Ex: page fault handler or R/W system calls) 50us ~ 1ms

Challenges of von-Neumann Machines

e The data growth surpasses the memory capacity growth.

e [ntensive data movements among computing, memory, and storage units may degrade
system performance.

Data Growth

Moore’s Law

2012

Data Growth vs. Moore’s Law

2020

Compute

Compute
% Caffe

APACH!

L}

Intensive Data Movements

Memory

€1 1 1 L |

Memory

Storage

Intensive Data Movements

General Applications

Storage

Big-Data Applications

Challenges of von-Neumann Machines

Emerging Memory and Storage Devices

NVMe M.2 SSD

Intel Optane DC
Persistent Memory

EEEEEEEEE
o1 logic

Intel Optane SSD

TSMC PIM Chips

NVMe U.2 SSD

“ DRAM
W i
2l 3
‘;; sssssssss [inter
P @ - AR a0 e et St S PR e
-l L T

£ . < C i L e

Z-55D™ NAND Flash

gl 1111 AT

NVMe PCle SSD Samsung Z-NAND SSD HPE NVDIMM Samsung AXDIMM
High Throughput Ultra-Low Latency
3.98 GB/s ~5us

2011 2017 >Now

10

Next-Generation Computing Systems

e To deal with performance bottleneck caused by intensive data movements, we present a
next-generation computing system based on emerging devices.

e Technique highlights and challenges

v’ Processing-in-Memory (PIM) g Compute)
e Adaptive data allocation to deal with scalability issue © Sﬁ;’;‘ffe
e Re-arrange graph indexing to deal with utilization issue DIV < Tensorflow (o HEEEE
v Hybrld Main Memory bztensjveDatajl*lovements
e Joint management of CPU and Storage-Class Memory (SCM) B N E—— L System
devices to break down the great memory wall - , , Co-design
e Re-design OS management to enjoy the benefit of Hybrid Main Memory
ultra-low-latency and high bus throughput Hybrid e D v VeS|
Main = n N
v’ System Co-design Memory Storage
e Device-friendly application design to enhance device .
lifetime and improve quality-of-service .

e Today, we will focus on this part at the last 30 minutes

M=IC Processing-in-Memory (PIM) (1/3)

INTERNATIONAL Co., LTD.

e Before being processed, data movements are unavoidable between memory and compute
units.

e Leverage Processing-in-Memory (PIM) technology to eliminate data movements.

2*2 Crgssbar OU ReRAM

\ ‘% 1 it Lin
- Compute %2 2 %L%_;’: i BitLine
g Caffe Kkl KKK ‘12{ ’7a
Tensor ‘ _Qbh—‘t-_z_ﬁi"t. _’1’:_’;‘5, s, ,
PIM < (I)1h=mvl1_*aGV\:: ;
V2
]
bevid: ¥
FCLil | l
g --% Example of Vector Multiplication
S+A

ReRAM-based Crossbar Accelerator

M=IC Processing-in-Memory (PIM) (2/3)

INTERNATIONAL Co., LTD.

Adaptive Data Akegerftorpssbar OU
e Larger OU, Better Performance - Crossbaf oU HighetCSmiationBirors

The performance of crossbar accelerator is proportional to
the number of NVM cells in each operation unit (OU).

However, larger OU also causes higher computation errors.

e Adaptive Data Allocation

To Deal with scalability issue, we allocate small OUs for
Most-Significant-Bit (MSB) and large OUs for Least-
Significant-Bit (LSB)

((apc)(aoc)(apc)(Abc))
C S+A)

MACRONIX
INTERNATIONAL Co., LTD.

e Larger OU, Better Performance

The performance of crossbar accelerator is proportional to

the number of NVM cells in each operation unit (OU).

However, larger OU also causes higher computation errors.

e Re-arrange Graph Layout

Graphs are usually stored as sparse matrix, which
decreases the utilization of OUs.

To Deal with utilization issue, we re-arrange graph indexing
to fit crossbar architecture.

-
-9 ,
L

\ Original Graph

General Cases
2*2 Crossbar QU
r—gs

....................

....................

Dttlld

Original Adjacency Matrix Shuffled Adjacency Matrix /

Our Design

..........

Dltld

MEIE processing-in-Memory (PIM) (3/3)

Adaptive Data Allocation
2*2 Crossbar OU 4*4 Crossbar OU

((apc)(aoc)(apc)(Abc))
C S+A)

13

14

MEIC Achievements of PIM Designs

MACRONIX
INTERNATIONAL Co., LTD.

e Publications
— |EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD, 2020)
(Integrated with ACM/IEEE EMSOFT, Top Conference) (Work with Macronix)
— ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED, 2021)
(Top Conference) (Work with Macronix)
— ACMY/IEEE Design Automation and Test in Europe (DATE, 2021)
(Work with TU Dortmund, Germany)

e US Patent
— Neural Network Computation Method And Apparatus Using Adaptive Data Representation

(Work with Macronix)
e Patent Number: US 16,798,166
e Publication Date: Oct. 1st, 2020

[1] https://lwww.samsung.com/semiconductor/newsroom/events/open-innovation-contest/#finalists

Hybrid Main Memory (1/4)

e Before being processed, data movements are unavoidable between storage and memory
units.
e Realize low-cost high-performance main memory extension with Hybrid Memory Devices.

Hardware-Controlled
Memory Extension
CPU CPU
Cache —| Cache
(1ns ~ 10ns) (1ns ~ 10ns)
ERequests from CPU Operating System
: Swap
_ _ DIMM
Hybrid Main Memory Controller
. t
Hybrid I 1 =
Main = | n W | - Fast Memory Slow Memory I Swap Area || Storage
(~ 50ns) (~ 50,000ns) (~3,000ns) || (~3,000ns)
Memory Storage
Storage-Class Memory (SCM) Ultra-Low Latency Storage
N

Hybrid Main Memory (2/4)

Hardware-Controlled Memory Extension

— Joint Management of CPU and Storage-Class Memory (SCM) to break down the “great memory wall”.

0
Exit
Admitted

CPU Interrupt
Cache %'talling
(1/’)5 - 10/’)5) Scheduler
Dispatch ; |
: I/0 or Event or Relocation Slt-0|:1_g Slt(elﬁp
: C leti I/0 or Event alling alling
: Requests from CPU ompletion o
4 :
: . - Page
DI M M Relsvca!:mn Marking
ai
[6)]
Controller U Great Memory Wall Stall-aware Process State Diagram

t

. 4 ‘ 123 Continuous Access wmms |
Fast Memory Slow Memory o 60 S20% _ -
("’50n5) (“‘50,000n5) ;g ... g % a

Storage-Class Mem

ory (SCM)

Non-Continuous Access e==z=a |

adiosity TensorFlow Dedup Wrf Blender Caffe

40% of Memory Accesses Show High Spatial Locality

17

Hybrid Main Memory (3/4)

OS-Controlled Memory Extension
— Dynamic OS page management to enjoy the benefit of Ultra-Low-Latency (ULL) storage devices and high
bus throughput. (A rethinking of OS Paging)

CPU

Cache
(1ns ~ 10ns)

Operating System

Swap
1o
Legacy OS vs. Fast-10
Issue #1: Page Management
— ——
\ 4 v
Memory Swap Area Storage
(~ 50ns) (~ 3,000ns) (~ 3,000ns)

lltra-Low Latency Storage |

Virtual Biodkesizeface. c4K83 pobgsamagmgctatiphexity!

Page Page Frame (4KB)
' }
= <« Process B doesn’t
RAM Swap! know the change!
Phy Hre

Storage (e.g., HDD, SSD)

18

Hybrid Main Memory (3/4)

e 0OS-Controlled Memory Extension

— Dynamic OS page management to enjoy the benefit of Ultra-Low-Latency (ULL) storage devices and high
bus throughput. (A rethinking of OS Paging)

CPU e—e Async 3us e -@ Async 10us
” Cache R |._. 9;321;31.: _ IT- Sy;t;mus
(1ns ~ 10ns) 12000 na ys!s of C asting Time (3 Processes)
" Context Switch Latency: 7us
’g 11000}
Operating System o 10000
E 9000}
Swip 2 8000}
0 2 70000~
Legacy OS vs. Fast-10 = so0ol
Issue #1: Page Management g 5000P
S = T 4000
\ 4 v [e) :
= 3000f-.,
Memory Swap Area Storage 0000l T e : e
(~ 50ns) (~ 3,000ns) (~ 3,000ns) 4 32 256 2048
Page Size (KB)
Ultra-Low Latency Storage Larger Page Size Has Better Performance

19

Hybrid Main Memory (4/4)

e 0OS-Controlled Memory Extension
— Re-design OS management to utilize CPU idle time and enjoy the benefit of Ultra-Low-Latency (ULL)

r vices. inki ' :
storage devices. (A rethinking of context switch) Asynchronized 1/O Management (Legacy OS)
C P U 0 R(gfquesr 0 1’?@@1@5[g Completed
User Mode —4 . :
> Cache Process Execution Lo iProcess Execution
6 Heavy Process Switching Overhead
(1ns ~ 10ns) Kernel Mode Context Switch
®
Response Time of ULL Storage Device
Operating System : -
Synchronized 1I/O Management (Solution from Intel/IBM!1)
Swa p /0 Request /0 Request Completed
me
. e M M
Context Switch Qverhead. 1~10us = Legucy OS US. Pust-lo User Mode Process Execution . iProcess Execution
ULL Response Time: 1~10us - Kernel Mode : Lower CPU Utilization ‘
Issue #2: Context Switch Overhead CPU Busy Waiting
— s : :
— — Proposed I/O Management with Cycle Stealing (Our solution)
> M emo ry S Wa p A rea S tora ge 10 R§que5[0 Reques[: Completed
(~ 50ns) (~ 3,000ns) (~ 3,000ns) o .§
User Mode Process Execution “: gvt(:id ggg%‘:rl‘g ?yerhead :Optimized Execution
Ultra-Low Latency Storage Kernel Mode — e
— — Process-Context-Free Execution

[1] Intel: J. Yang, D. B. Minturn, and F. Hady. When poll is better than interrupt. In Proceedings of the 10th USENIX Conference on File and Storage Technologies, FAST '12, pages 3-3, Berkeley, CA, USA, 2012.

20

System Co-Design

e |n addition to the unavoidable data movements, device lifetime and system Quality-of-
Service (QoS) are also important factors for users.
e Enhance device lifetime and improve system QoS with Device-Friendly Application Design.

Compute
P Caffe

APACH!

[

Hybrid Main Memory

|

Storage

Some Representative Results

System
Co-design _

Transformer + GPU HBM
(NeurlIPS’ 23, Top Conference)

Meta Deep Learning Recommendation System + SSD
(ACM/IEEE DAC’ 22, Top Conference) (First Author)

Convolutional Neural Networks (CNN) + PCM
(IEEE TCAD, Integrated with ACM/IEEE EMSOFT’ 18, Top Conference) (First Author)

Data Deduplication (Cloud Storage) + SMR
(IEEE TCAD’21 & ACM/IEEE DAC’ 18, Top Conference) (First Author)

Random Forests + PCM
(ACM SAC’ 21, Work with UBO, France)
(IEEE NVMSA’ 19, Work with CUHK, Best Paper Award)

Data Consistency + SSD
(USENIX OSDI’ 20, Top Conference, Work with Academia Sinica)

21

Self-Bouncing to Suppress CNN Hot-Spots

e We proposes a CNN-aware self-bouncing pinning

strateqy to efficiently suppress the write hot-spots.
— Investigate the memory access pattern induced by CNN

Convolutional Layer . ,
(:Xtractlieaiures) CaffeNet Inference —&-

computing and observe the “write hot-spot” pattern.

— Propose a CPU cache self-bouncing pinning strategy by
leveraging the iterative access pattern of CNN to improve the

NVM lifetime.

4,

CNNs-Based Image Recognition CPU
Convolutional Fully Connected
La?frf. e Layore Core
Limited Cache
Memory
B N{ Controller
k.u,»‘
i y 1 [1
Hot-Spots NVM-based Main Memory (e.g. PCM)

1000

(Classification)
100 :

0 50 150 200
Time (10 Million Instructions)

Pin_Ratio (%)

Max i

Obse rve_t Freseee Ty ‘.‘ :.

«[Fast Deca

.
Time
(Cycles)

Min

— r
Keep Pinning Once Pinning

An Example of Showing
How to Co-Design Applications and Storage Devices

22

Co-desighing Recommendation Systems with SSDs

e |ntroduction -- Training Recommendation Systems

e Key Challenge -- Over-Read

e State-of-the-art Solution -- LSM-based Strategy

e Our Solution -- Rec-Aware SSD Data Arranger (READER)

e Evaluation Results

Training Recommendation Systems

Recommendation Systems: Widely used in

e-commerce and entertainment. HSEEr - Like Like
.. . User 2 Like Like Dislike
Feature Training: Data belonging to the same : =
User 3 Like ? Dislike

feature will be trained together in trainers.

|nge5t (Or preproceSS) data for training CPU (P_r|eprocessing) Trainers (Train Features)
recommendation systems AEI:Y [o emoserr
— Extract dataset (raw data) from storage S s Viadh e Vish (il Vil
— Transform data formats to tensor formats @ Extract (Reac) KV-ltems Belonging to o
— Load to trainers (e.g., GPU or TPU) Flash-based SSD

{Fatl;:Var}h {Fatl:iVao} {Fatls: Vas)

{Fatla: Vgl {Fatls:Vash {Fatle: Vae}

{Fet11:Veih {Fe+l2:Veo} {Fetl3iVes}

Flash Page

Update Feature Data in SSD

Trainers (Train Features)

Feature is associated with multiple key- CPU (Preprocessing)
value items.
— Key: Feature + Item (“Rate+Titanic”)
— Value: Correlation between the feature
and the item

10e4x3
wJojsuel |
peo’

Data is usually not static.
— Update dataset to the write buffer

— Orinsert new items
{Fatls: Vagk {Fatls:Vash {Fatls: Vag}

{Fe+11:Vea}, {Fetl:Vea}, {FetlsiVas}

Flash Page

Update Feature Data in SSD (Cont.)

e |nstead of updating data in-place, data
in SSDs shall be updated out-of-place

— SSD’s Constraints:

e An erase unit (i.e., block) is larger than a

write unit (i.e., page)

e Shall erase before writing new data

CPU (Preprocessing)

10e0Xx3
wiojsuel |
peon

Trainers (Train Features)

@ Update Values

e |ssue: Out-of-place updates break

feature locality.

DRAM (Write Buffer)
{FatliVoarh {Fatls: Viagh {Fatls: Viagl, {Fatle: Viagh {Fatlii Vigi} {Fetls: Vigs}

[Invalidate old data

gAppend—OnIy
Data Update

Flash-based SSD

s {Fa+12:Vash

[s {Fatls:Vash

» {Fet+15:Ve,},

Flash Page (Erase before Write)

{Fat1i:Varh {Fatls Vagh {Fatls: Viag}

| |
{Fatls: Vach {Fetli: Vigi}, {Fetls: V’st

Challenge of Data Extracting: Over-Read

Actually, only requires 2 pages.

Bottleneck
® Cha||eng6: Most of CPU CyC|eS spent on CPU (Preprocessing) Trainers (Train Features)
pre-processing extra datalll. 7ol e |- Tensors for F, |
s [g.. — g’_ {Fat:V ach {Fat12:Vag), {Fatls: Viash, :
e Over-Read Issue: CPU reads extra data N E e Cleach s ol
from SSDs and pre-processes them to —]
reconstruct feature-locality. DRAM (Write Buffer)

Bottleneck |@ Extract (Read) KV-ltems Belonging to F,
Flash-based SSD

l » {Fat12:Vask, {Fatl:V ash {Fatls: Viash {Fatls: VAl
Extract F,: Shall read out 4 pages from the SSD.]
I_ {Fatls:Vash, {Fatlg: V'agh {Fetlii Vigi}, {Fetls: Vigs
Extra data: and unused data. -
, {Fe+15:Va,},

Flash Page (Erase before Write)

[1] Zhao, Mark, et al. "Understanding and Co-designing the Data Ingestion Pipeline for Industry-Scale RecSys Training." arXiv preprint arXiv:2108.09373 (2021).

State-of-the-art: Log-Structured Merged (LSM)

e LSMI: Merges and writes valid data
from low-utilized pages to new pages.
(Avoid reading stale data.)

e Challenge: Feature Items related to F,
are still scattered. (Mix with other

features)

Extract F,: Read out 3 pages from SSD.
Extra data: -and unused data.

[1] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive scale deep learning

ads systems. arXiv preprint arXiv:2003.05622 (2020)

CPU (Preprocessing)

10e0Xx3
wiojsuel |
peon

Trainers (Train Features)

DRAM (Write Buffer)

Flash-based SSD

Flash Page (Erase before Write)

{Fat1i:V arh {Fatls: Viag), {Fatly: V’A4}I

!{FA'HG: Vaeh {Fetlii Vigih {Fatls: V’Bsi

@ LSM-based Data Merging

Does LSM Effective Enough?

Latency: LSM spends 1.53x ~ 2x longer than optimal LS':eadTﬁ Optimal
Bandwidth: Drops by 22% ~ 31% compared with optimal éﬁg o .
Challenges: How to have a good SSD’s data arrangement so & 1:3:] :
as to avoid reading unused data? % 2l B OE O H |
5 1.0 E i [2 03 e
— Pro-actively merge data belonging to the same feature. i in e e e In)
XXL XL L M S XS

Datasets

— Smartly pin data in the write buffer.

| LSM [Optimal\

Read Throughput

KV items

- 1.6 0.8 0.51 0.31 0.16 0.08
(Billions)

L L M S
Datasets

Rec-Aware SSD Data Arranger (READER)

* Our READER comprises: Deep Recommendation System
— Rec-aware Data Merger: Merge (rearrange) T
the scattered feature items to new pages. Rec-aware SSD Data Arranger (READER)
— Rec-aware Data Pinner: Select and pin data Metadata Manager
inside buffer with considering feature-
_ Rec-aware Rec-aware
locality. Data Merger Data Pinner
v
Write Buffer
!
SSD

Rec-aware Data Merger

Select the to-be-merged features and merges Rec-aware Data Merger Metadata Manager
. - . Feature Table
the scattered feature items to new pages O e Vemdat wamase " e T-[Cp kv_cntd—

Logical Page Table

Metadata Manager: b Lo F b T -

— Feature Table:

e Mapping between a feature and logical pages.
e Monitor the number of KV items in each page.

Feature-fragmentation degree:
(Current pages store F.)/(Ideal pages store F))

Rec-aware Data Merger (Cont.)

e Select the to-be-merged features and merges
the scattered feature items to new pages

— 2. Read victim pages

— 3. Merges data items belonging to the
same feature

Write Buffer

@ Read Victim Pages

Pages containing F,

Flash-based SSD

» {Fa+12:Vash, {Fat1iVoah {Fatls: Viash {Fatls: Vias}

s {Fatl5:Vas}, {Fatle: Viagh {Fetlii Vg {Fetls: V,BS}l

, {Fe+12:Vg2},

Rec-aware Data Merger (Cont.)

e Select the to-be-merged features and merges

the scattered feature items to new pages
— 4. Write merged pages to SSD
— 5. Update metadata manager
— Do garbage collection in background

Write Buffer

y {Fat12:Vas},

@ Rec-aware Data Merging

s {Fat15:Vas},

P {Fatly: Vo), {Fatls: Vash {Fatls: Vash

{Fatls: Viaeh {Fetli: Vigi} {Fe+ls: Vigs}

-

@ Read Victim Pages

@ write Merged Pages

Flash-based SSD

{Fat1i:V arh {Fatls Viash {Fatlsl Vias}

{Fe+li: Vigi} {Fetls: Vigs}

» {Fe+12:Vga},

{Fatly: Vash {Fatls: Vash {Fatls: Vae}

Rec-aware Data Pinner

e Challenge: KV-items belonging to different features may be gradually mixed together
until the data merger merges the feature again.

e Main Idea: Increase feature locality by pinning items belonging to the same feature in
the write buffer.

Write Buffer MaxHeap
Pin Pin Pin
Fa|Fe |Fc|Fa | Fa|Fo | Fa| Fe Fg e G Fe
SN I PR I P I P I P PR I PR A P

Vas|Ve2|Vier| Ve[Var | V2| Viaz| Ve2

.
fms s EEEEEEREE s EEEEs IR I EEEEEEE NI s EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY

~—
~—
~
~
~—
—
~
~ o~
~

Rec-aware Pin Structure

#ltems
<Key>

Feature;y

e Read Time: READER can save 20% ~ 38% of overall read

Evaluation: Read Performance

time compared with the LSM-based strategy.

e Read Throughput: READER can reach 1.16X ~ 1.33X higher

read throughput than the LSM-based strategy.

— READER’s throughput results are within 12% of the
optimal read strategy.

KV items
(Billions)

Features

1.6

16000

0.8 0.51 0.31

8000 6400 5200

Datasets from Kaggle

0.16

4000

0.08

800

| LSM [@EE READER [OPT
| | Overqll Reaq Timel
0 1.0 - -
=09 |
gos|
X 0.7}
9 o
_&’ 0.6} -
'© (.5
Eod
Z 0.3LL : B & B g
— XXL XL L M S XS
Datasets
(5] LSM EEE READER [OPT
_Read Throughput

XXL

XL

i . ”M
Datasets

'S

XS

Evaluation: Lifetime & Buffer Size

e Lifetime (Update Amplification): The optimal read strategy
requires around 400 extra writes for updating an item.
READER and the LSM-based strategy only need 1 extra
writes for updating each item.

e Smaller Write Buffer: READER can reach 1.19X ~ 1.51X
higher read throughput than the LSM-based strategy.

— Also, READER is more stable

[LSM

BN READER

1 OPT

10°

Lifeti me

-
o
N

—
O_\

Update Amplification

izé;

-

y

2

XS

-
o
o

XXL XL

Datasets

| LSM

BN READER

1 OPT

)

wn
=
o

Read Throughput

ﬁ-l'l'-P-U'IU"I
DO
ooo

LOO00000OC

Read Throughput (MB/s

N OR
o

WWW LW bl

Sas 1 X

o
D T

172X

1/4X

Buffer Size

1/8X

Summary

e Reading unused feature items from SSDs seriously hurts the performance of
recommendation model training.

e We present a joint management middleware, a rec-aware SSD data arranger (READER), to
rearrange data in SSDs with considering the behavior of recommendation model training.
— Rec-aware data merger: pro-actively merges items belonging to the same feature.
— Rec-aware data pinner: smartly pins items in the write buffer.

e READER can save the overall read time by 20% ~ 38% compared with the LSM-based
strategy, and our read throughput results are within 12% of the optimal case.

What are we doing now?

38

Computing-Centric Recommendation In-Memory KV L Data I/O-Centric
. HPC Applications ¢ 1
Services Databases N
Application Exploration
4)
Joint Designs Process Data in|Devices Store Data to Devices | 1. Graph Neural Networks
1. Harmonize PIM and ISC Operating System 2. Recommender SyStems
devices. In-Device Computation Rethink/Merge *— 3. Large Language Models
2. Integrate legacy and Task Allocator Legacy Layers 4. In-Memory KV DBs
emerging computing units /
Processing-in- L.)
- — N Memory(PIM) OS Rethinking
Processing-in-Memory (PIM) — 1. Rethink Memory Layers
1. AxDIMM or UPMEM ¥ : 2. In-Memory File System
2. Memristor-based Crossbar PIM Devices i i
: 3. Intermittent Computing
3. Photonic-based PIM ? Samsung ReRAM DRAM
\ y AxDIMM Crossbar J
(.) . .)
In-Storage Computing (ISC) In-Storage Device Management Device Exploration
1. Design and Profile In-SSD Computing (ISC) And Data Placement | 4 \white-Box (e.g., OCSSD, SMR)
Computation = - i
pu. ! o ISC Devices Storage Devices 2. Compute-Express Link (CXL)
2. Operating System inside ISC) . (OCSSD, ZNS SSD, HM-SMR, 3. Emerging Devices (Photonic,
Devices Processing Units . .
Skyrmion, etc.) Skyrmion, DNA etc.))

39

Thanks for your attention
Q& A

